
JOURNAL OF COMPUTATIONAL PHYSICS 16, 298-303 (1974) 

Note 

On the Optimal Time Step and Computational Eficiency of 
Difference Schemes for PDE 

1. DERIVATION OF AN OPTIMAL TIME STEP 

We assume that we have an initial value problem for a partial differential 
equation au/at = L(U) whose solution is u(x, t). We denote the solution of a 
finite difference approximation to this equation by Uin which is an approximation 
to u(x, , t,) where the {xj} are the mesh points and t, represents the discrete time 
levels. We will assume that there is a power series expansion for the error in 
terms of the mesh spacing h = Ax of the following form. 

U(X~ , t,) = Ujn + hge(xj , t, , X) + O(hQ+l). (1) 

The function e(x, t, A) is the solution of an associated differential equation [I]. 
Here h = k/hqlp where k = At and h = Ax denote the time step and mesh 
increment. The integers 4 and p determine the order of accuracy in space and time. 
For a scheme with fourth-order accurate space differences and second-order 
accurate time differences, we would have q = 4 and p = 2. Note that we have 
chosen the asymptotic relation between k and h so that the spatial and temporal 
truncation error is balanced. 

For example, consider the Crank-Nicolson scheme for the heat equation 

au/at = (a2qax2) + p, (2) 

where u = u(x, t), p = p(x, t), 0 < x < 1, and 0 < t. The initial-boundary 
conditions are 

4% 0) = f(x), 
@, t> = go(t>, 

41, t> = &>. 

The finite difference scheme is 

uj”+l = u,” + &/2) A(Un+l + u’$ + At p(x, , t, + 4% (3) 

where p = At/Ax2 and AUj = U,,l - 2Uj + U,-l, xj = j/J. In the above 
difference scheme centered at j = 1, we replace (U:+’ + U,“)/2 by go(t, + At/X). 
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A similar replacement is used at j = J - 1. An error expansion for the heat 
equation of the form given in Eq. (1) has been given by Keller [ 11. If we simplify (2) 
by setting p(x, t) = go(t) = gl(t) = 0, then we can derive an expansion in the 
form of Eq. (1) for the Crank-Nicolson scheme (3). In this case we have 

u(xj , tn) = Up + h2e(xj , t, , A) + O(h4), (4) 

where the function e(x, t, X) is the solution of the following heat equation. 

aept = (a2e/ax2) + R(u); 

R(u) = - (l/12) ~$4 - (h2/8) ZQ,~ + (h2/24) ZQ ; 

e(x, 0) 3 e(0, t) 3 e(1, t) = 0; 

X = k/h. 

The author is indebted to the reviewers for pointing out that this relation also 
holds for a problem with nonhomogeneous source term p and boundary 
conditions g. The method used to obtain this equation is explained by Keller [I J. 
In this case we have X = klhqlp with p = q = 2. If we had used a fourth-order 
approximation for P/ax2 (AU = (-U+., + 16Uj-l - 3OU, + 16Ui+l - Uj+2)/12h2), 
then we would have X = k/h2 (that is, p = 2 and q = 4). 

Once we have Eq. (1) we can easily obtain an expression for the optimal time 
step. The method is an extension of that used by Douglas [2]. We let E denote the 
maximum error in the interval 0 < t < T. If we ignore the O(hg+l) term in Eq. (I) 
we have 

E = oy$>l hq I e(x, t, X)1 = h”(h). . . 
O<t<T 

(5) 

Next we assume that the cost of computing a solution is given by 

C = TMclkhd, 

where M, is a constant dependent on the difference scheme and the programming, 
T the length of the integration (0 < t < T) and d the dimension of the space 
over which the integration is taken. Our objective is to choose h to minimize C 
for a given error E. We have E = hqf(X) and k = AhalP, and therefore 

C = VM,l~9(fo())aA (6) 

where CII = d/q + l/p. The minimum is obtained where dC/dh = 0, and thus 
we must solve the following equation to obtain the optimal value (A) of X, 

J =fGwf'(~). 
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This yields the minimum of (f(X)p/X. Note that the optimum value of X does not 
depend on the mesh spacing h or the error e. We will assume that there are no 
stability restrictions on the time step, so that we are free to use the optimal time 
step. 

2. CONCLUSION 

From Eq. (6) we can obtain asymptotic estimates for the variation of C with E. 
We have 

c = Kc-a, (7) 

where K = TM,(f(x))“/x depends on the difference scheme. To compare different 
schemes we can ignore K only if E is very small. Since one seldom asks for small E 
in practice, these comparisons are not too relevant. However, we will list the 
asymptotic behavior in Table I. 

TABLE I 

Asymptotic Variation of Cost C with Error E” 

d P 4 C-1 

1 2 2 

1 2 4 

1 4 4 

3 2 2 

3 2 4 

3 4 4 

a k = ,Wp, d = dimension. 

From these asymptotic estimates we are led to the following conclusions. 
In three dimensions a scheme which is fourth-order in space and second-order 
in time is quite effective; however, it is not effective in one dimension. A scheme 
which is fourth-order in both space and time is clearly much more effective in one 
dimension, as one would expect. Of course, we have here ignored the constant K 
in Eq. (7), which will be larger for the fourth-order scheme. These same results are 
obtained by Swartz and Wendroff [3], except they did not use quite as general 
an expression for the error (5) and considered only one-dimensional problems. 
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Note that the function (f(h))ol/h can be estimated without knowledge of the 
actual error e(x, t, h) (which would require knowledge of the exact solution). 
We can integrate to time t = T using two different mesh spacings, but the same 
value of X. Then we have 

~2 - Uz = e(xjl , T, X)(h,* - h,*). 

Here we adjust the limits n, and n2 so that t nl = tn2 = T. To accomodate an 
arbitrary ratio of h,/h, , it may be necessary to adjust the value of d t on the last 
time step so that lim tI = T is reached. This should not affect the asymptotic 
estimate (4). Also we only compare at mesh indices j, and j, so that j,h, = j,h, . 
Then we approximate f(h) by 

This provides an estimate off(h) without knowledge of the exact solution. 

3. AN EXAMPLE 

We computed a test case using the Crank-Nicolson scheme (3) for the heat 
Eq. (2). We choose p(x, t), g,,(t), and gl(t) so that the solution u(x, t) is given by 

u(x, t) = sin 77(x - 7rt). 

In Fig. 1 we show a graph of,f(h)/X andf@) computed from 

Note that (Y = 1 for this example. 

FIG. 1. fQ)/A and f(h) vs X. Computed from the exact error e(x, t, X). 
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In order to obtain a smooth curve we had to use a very large value of J. The 
points for J = 90 and J = 135 are plotted, and they show that f(X)/X is not 
determined too well even at this resolution. The resolution required to evaluatef(h) 
may be highly problem-dependent. Note that the cost factor (f(h))U/h is not 
highly sensitive to variation in X, at least for this example. As h varies from 0.15-0.4, 
the cost varies about 13 % from its minimum value. Once the values of x and f(X) 
are known, then the values of h and k can be obtained from (5) and the definition 
of X. Thef(h) curve in Fig. 1 is obtained from the smoothedf(h)/h curve. 

J 
0 

FIG. 2. f(h)/X vs X. Computed from I UQ - uj”,z l/l h’ - hP 1. 

In Fig. 2 we show the results of an attempt to determine,f(h)/h by using the 
calculated solution only and not the error. Here we took Jz = 3J,/2 or h, = 2h,/3. 
At a reasonable resolution, say J1 = 20, the function f(h)/X is not very well 
determined. This is probably because the asymptotic estimate is not very good. 
In Fig. 2 we connect the observed values and make no attempt to smooth the 
curves. 

In Fig. 3 we plot the logarithm of the cost versus the logarithm of the error. 
To estimate the cost we used the expression C = J T/At. The slope of these lines 
ranges from 1.00-1.03. The error in determining the lines is perhaps 0.02 or 0.03. 
The points on the graph were determined using J = 8, 16, and 32. The variation 
in the error with J at fixed X seems to be smoother than the variation in h at fixed J. 
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FIG. 3. Cost vs error. Logarithmic plot each obtained from the points at J = 8, 16, 32. 
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